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ABSTRACT

The precision viticulture aims to optimize grape (Vitis spp. L.) vineyard management; reducing use of resources and environmental 
impacts; and maximizing quality yield. New technologies as UAVs, satellites, proximal sensors, variable rate machines (VRT) 
and robots are being developed and used more frequently in some parts of the world in recent years. Developments and abilities 
of computers, software and informatic systems to read, analyze, process and transfer a huge amount of data are major milestones 
in precision viticulture. In addition, different decision support systems (DSSs) for making better crop management decisions 
at the right time also assist vine growers. In the fragmented small vineyards in India, relatively cheaper technologies like UAV, 
proximal monitoring through various tools, and DSSs developed by the ICAR-NRC for Grapes, Pune, Maharashtra, India 
can be used by individual grape grower or through farmers’ cooperatives/groups to make grape cultivation technologically-, 
economically- and environmentally- viable. Therefore, current status of precision viticulture technologies and their potential 
applications in viticulture, have been discussed.
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Grape (Vitis spp. L.), most important fruit crop in 
the world, is grown in a wide range of environments 
(Somkuwar and Ghule, 2020). Total world grape 
production in 2020 was 78.03 million t from an area 
of 6.950 million ha (FAOSTAT, 2022). In India, grape is 
cultivated in almost all parts having diverse climatic 
conditions ranging from extreme temperate regions 
of Himachal Pradesh to tropical parts of South India. 
As per the 3rd advance estimate, India produced 2.94 
million t of grapes from an area of 0.147 million ha 
in 2019-2020 (DA&FW, 2022). Grape is a high input 
crop needing application of several expensive inputs 
including repeated use of pesticides. 

As such cost of grape production is more and 
indiscriminate use of inputs leads to food safety issues 
and environmental degradation. These problems 
are more pronounced in tropical dryland fruit 
production (Somkuwar, 2018). Precision viticulture 
aims at reducing the input costs by following need-
based cultural/crop protection practices; applying 
need-based inputs; increase grape yield and quality 
while minimizing environmental impact (Gebbers 
and Adamchuk, 2010). Vineyards are generally 
spatially variable and heterogeneous with regard to 

their location, soil quality, cropping practices and 
weather conditions (Bramley, 2003). 

They, therefore, require specific cultural and crop-
protection managements to address the real needs of 
the crop, in relation to these variabilities (Proffit et al., 
2006). Recent developments in new precision farming 
technologies for supporting vineyard management 
allows improved productivity, quality, food safety 
and at the same time, reduce environmental impact. 
The essential steps in precision viticulture are 
assessing variation and its management. Components 
that are responsible for vineyard performance in 
terms of yield and quality vary in space and time. 
The spatial variability in vineyards can be assessed 
and mapped using surveys, high resolution satellite/
aerial data and modeling. 

Once variation is adequately assessed, accurate 
cultural (fertilizers, irrigations etc) and crop-protection 
(pesticides) inputs are applied in site-specific manner 
to reduce cost of cultivation and environmental 
impacts. Byju et al. (2020) developed fertilizer best 
management practices (FBMP) for three major cassava-
growing regions of India using site-specific nutrient 
management (SSNM) and SSNM zonation maps for 
efficient use of fertilizers and getting better yields in 
cassava.*Corresponding author : naiksharmistha@gmail.com
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PRECISION VITICULTURE

Precision viticulture is mainly used for 
optimization of inputs, differential grape 
harvesting, yield forecasting, and accuracy of 
canopy and soil sampling (Bramley and Lamb, 2003). 
In comparison to other crops, initiation of precision 
viticulture is of recent origin. This was due to the 
complexity of vineyard data, requirement of high-
resolution images to differentiate canopy from soil 
and big data processing capacity to manage spatial 
information. 

There are mainly two aspects of precision 
viticulture. These are monitoring technologies, that 
are used for mapping spatial variability and the 
technologies that are utilized to provide site-specific 
cultural inputs known as variable-rate technologies 
(VRTs) and robotics. In addition, supplementary 
technologies such as disease forecasting and Decision 
Support Systems (DSSs) also assist grape growers to 
take prophylactic actions. Available precision tools 
and their applications in viticulture are described 
below. 

Information and communication technology (ICT) 
Computers, mobile computing systems, internet 

and mobiles are major components for information 
gathering, processing and transferring. For collection 
of huge data from the fields mobile computing 
systems having high speed microprocessors that could 
operate at very high speeds were developed to store 
and transfer massive amounts of data. In addition to 
the computer hardware, there had been significant 
progress in development of precision farming 
software. Development of software for precision 
agriculture is more an experience than an application. 
The most important computer application in precision 
agriculture is Computer Vision (CV). 

It is a technology that acquires, processes, analyses 
and extracts data of images to provide numerical 
or symbolic information such as the estimation or 
prediction of key traits of the targeted object, in a 
fast, contactless, reproducible and accurate manner 
(Vidal et al., 2013). CV comprises a set of techniques 
associated with artificial intelligence, that allows a 
computer to understand and read an image to derive 
precise information (Ballard and Brown, 1982). Such 
type of electronic integration has played important 
role in furtherance of precision farming during the 
last few decades. 

Monitoring technologies
Several technologies and sensors are deployed 

for acquiring intra-vineyard and inter-vineyard 
georeferenced information. Mainly two types of 
technologies, viz. remote sensing technologies and 
proximal sensing technologies are used to monitor 
vineyards.

Remote monitoring
Satellites, aircrafts and UAVs (unmanned aerial 

vehicles or drones) are being widely used in remote 
monitoring.

Satellites 
The Global Positioning System (GPS) is a space-

based satellite navigation system that provides 
highly accurate, rapid and timely information. The 
GPS receiver calculates position of the vineyard on 
earth (up to 15 m accuracy) based on the information 
it receives from more than 4 satellites. However, 
a network of fixed ground-based reference 
stations can correct the positions indicated by the 
satellite systems and provide location accuracy in 
centimeters. The first satellite, Landsat-1 launched 
in 1972 was equipped with multispectral sensor and 
provided a spatial resolution of 80 m with a revisit 
time of approximately 18 days. The last launched 
Landsat satellite, Landsat-8 (Ridwan et al., 2018) 
operates in the visible, near-infrared, short wave 
infrared and thermal infrared spectrums. Other 
high-resolution satellites that are being used in 
remote sensing are: 

 Sentinel-2 (https://sentinels.copernicus.eu/
web/sentinel/user-guides/sentinel-2-msi),
 RapidEye (https://earth.esa.int/eogateway/
missions/rapideye?text=rapideye) 
 WorldView -1, -2 and -3 (https://earthdata.nasa.
gov/worldview) 
Sentinel-2 data are open-source and freely 

downloadable. RapidEye has been used to evaluate 
Normalized Differential Vegetation Index (NDVI) in 
order to characterize the vine vigor and some phenolic 
parameters. Simple linear relationships between 
NDVI at berry set, pre-veraison and ripening has been 
found to evaluate sugar content and anthocyanins at 
harvesting (Santangelo et al., 2013). RapidEye has also 
been used to evaluate the Leaf Area Index (LAI) in 
vineyards demonstrating a good correlation with in-
field estimation of evapotranspiration (Vanino et al., 
2015). WorldView has been used to detect vineyards, 
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canopy estimation and discrimination of varieties 
(Karakizi et al. 2016). 

Aircrafts 
Aircrafts monitor large areas with a long flight 

range and can carry heavy and multiple sensors at a 
time. Aircrafts provide better ground resolution (up 
to 10 cm) depending upon flying altitude. However, 
aircrafts are economically feasible only on areas 
bigger than 10 ha (Matese and Di Gennaro, 2015).

UAV
UAVs fly autonomously and can be controlled 

remotely by a ground pilot. UAVs are fixed with 
several flight control sensors (gyroscopes, compass, 
GPS, pressure sensor and accelerometers) which 
are controlled by a microprocessor. They can be 
equipped with a variety of sensors for performing 
a wide range of monitoring. UAVs provide very 
high spatial resolution on the ground (down to cm) 
and they are ideal for small-to-medium fields (1–20 
ha), characterized by high fragmentation and high 
heterogeneity. There are two types of UAVs having 
rotary wings and fixed-wings. Rotary-wings UAVs 
having less flight time (up to 30 minutes) are generally 
used for monitoring small fragmented areas (up to 
20 hectares), while fixed-wings UAVs having more 
flight time (up to 1 hour) allow monitoring large 
unfragmented flat areas (Ammoniaci et al., 2021). 

In comparison to satellites, UAVs have much 
higher resolution, therefore, use of UAVs with high-
resolution sensors is suggested for assessing vine 
structure and inter-row spacing of vineyards (Khaliq 
et al. 2019). UAVs with true colour cameras (RGB) and 
multispectral or thermal sensors have been used in 
viticulture to detect vineyards/vine rows (Comba et 
al., 2015); estimation of grape yield (Di Gennaro et 
al., 2019); assessing vegetative vigor and detecting 
missing plants (Matese et al., 2018); and estimating 
water stress and assessing grape maturity (Soubry 
et al., 2018). UAV technology has shown to be 
economically compatible with the agronomic costs in 
vineyards with more than 40 hectares having lots of 
fragmented vineyards (Mondino et al, 2017).

Proximal monitoring
In addition to aerial monitoring, several tools 

having different types of sensers are available for 
proximal monitoring. Radiometric and fluorometric 
sensors and some application programmes such as 
VitiCanopy are used to assess canopy vigour, stress, 

chlorophyll content, nitrogen concentration and leaf 
area index. Geophysical and spectro-radiometric 
sensors are employed for assessing soil composition 
and structure. While, optical sensors (fluorometric 
and spectrophotometric sensors) determine grape 
quality and berry ripening. These sensors are 
mounted on farm machinery or some of them such 
as optical sensors are fixed on handheld devices 
and various measurements are carried by moving 
vehicles or manually for getting precise ground 
information. In addition, wireless sensor network 
(WSN) technologies configured in vineyards provide 
a highly useful and efficient tool for remote and real-
time monitoring of important variables od vineyard.

Canopy assessment by proximal sensors 
Radiometric sensors measure electromagnetic 

radiation reflected by vegetation and it can allow 
the rapid collection of important information for 
indirect measurement of the canopy state. The 
spectral response of canopy is mainly related to the 
radiation absorption by the pigments, which allows 
the assessment of vegetation cover but also the 
characterization of its health (Casa, 2017). If solar 
radiations or external light source is used, radiometric 
sensors are passive and results are affected by 
variations in lighting conditions. 

But, if they use their own artificial light source, 
they are active and less affected by lighting variations. 
Also, use of inbuilt lighting by active sensors permits 
recording of information in night. Two commercially 
available radiometric sensors are OptRx (Ag Leader 
Technology, Ames, IA, USA) used to assess the vigor 
of the crop and CropSpec (Topcon, Livermore, CA, 
USA) used to determine chlorophyll content that can 
be correlated to nitrogen concentration in leaves.

Another optical sensor is fluorometer that 
measures fluorescence emitted by the chlorophyll. 
Based on this information onset of stress conditions 
in the vineyard can be predicted. The information 
derived from the fluorescence measurement 
represents functional state of the plant, and in 
turn photosynthetic potential of canopy. From this 
photosynthetic potential expressed as electronic 
transport rate (ETR) and two other parameters viz., leaf 
and air temperatures, Losciale et al. (2015) developed 
an index (IPL) capable of estimating the rate of net 
photosynthesis of the leaves. Photosynthetic activity 
has been shown to influence fruit composition and 
wine quality in grape (Somkuwar et al., 2014a, 2018). 
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VitiCanopy developed by De Bei et al. (2016) is 
one of the most used Apps to measure the LAI in 
vineyards. This is done through images acquired by 
a smartphone/tablet. The image is then analyzed by 
the App to calculate both the LAI and the porosity of 
the canopy. The results obtained through VitiCanopy 
are georeferenced to know the variation in the entire 
vineyard. Such information can be extrapolated to 
estimate the vigour, productivity and quality of 
produce from a vineyard.

Soil assessment by proximal sensors 
Monitoring of soil health is one of the most 

important applications of precision viticulture. 
Wide range of sensors are used for assessing soil 
variability. Electrical conductivity (EC) of the soil 
is directly related with several soil properties such 
as texture, depth, water retention capacity, organic 
matter content and salinity. EC of the soil an be 
measured using mobile platforms equipped with 
sensors and GPS. Two types of sensors viz., Electrical 
Resistivity Sensors and Electromagnetic Induction 
Sensors are used to measure soil EC. Commercially 
available electrical resistivity sensors are Veris 3100 
(Veris Technologies Inc, Salina, USA) and Automatic 
Resistivity Profiling System (Geocarta Ltd, Paris, 
France). While, DualEM (DualEM, Milton, Canada) 
and EM-31 & EM-38 (Geonics Ltd, Mississauga, 
Canada) are commercially available electromagnetic 
induction sensors. Knowledge about spatial variability 
of soil characteristics is important for understanding 
variability in the physiological response of the vines 
(Priori et al. 2019). 

Other type of sensors used for soil assessment 
are Geophysical sensors. These sensors measure 
potential drop in introduced current in the soil. Such 
drop is related with EC. The EC of the soil is related 
to the soil texture, humidity, salinity, degree of 
compaction and the presence of gravel and pebbles 
in the soil. Invasive geophysical sensors (mobile soil 
resistance-meters) measure the apparent resistivity 
of the soil by using direct contact electrodes and non-
invasive sensors (electromagnetic induction sensors, 
ground penetrating radars) assess soil properties by 
using electromagnetic fields. Another type of non-
invasive sensor is the ground penetrating radars. 
These radars gather information of the soil through 
emission of electromagnetic pulses and phenomena 
of reflection and refraction of the different materials 
of soil.

Third type of sensor used for assessing soil is 
Spectroradiometer. Each soil has its own spectral 
signature which is the intensity of the reflected 
radiation depending on the intrinsic spectral behavior 
of soil constituents (minerals, organic matter, water 
etc). Gamma-ray based spectroradiometers consist of 
a scintillator crystal, generally, made of cesium iodide 
(Csl) or sodium iodide (Nal), which emits photons 
when hit by gamma rays. Reflected photons by the 
soil are measured to characterize soil properties. 
Vis-nir reflectance spectroradiometer is rapid and 
relatively cheap alternative to gamma-ray based 
spectroradiometer. This sensor can measure several 
soil properties in a single scan. 

Grape quality assessment by proximal sensors 
Berry quality is an important attribute from 

commercial angle and several cultural manipulations 
are made to improve bunch yield, berry quality and 
biochemical composition of berries (Somkuwar et al., 
2014b). Non-destructive monitoring of grape quality 
parameters is based on optical sensors. Manual 
devices or tools fixed with optical sensors are used 
for non-destructive monitoring of grape quality 
parameters. Some of the tools that are in common use 
are: Multiplex (Force-A, Orsay, France) and Spectron 
(Pellenc SA, Pertuis, France). Multiplex is mainly used 
to estimate the nitrogen status of grapevine leaves. 

In addition to nitrogen status, Multiplex can 
also assess contents of chlorophyll, flavanols and 
anthocyanins in the leaves and grapes (Cerovic et al., 
2008). Another sensor used to assess the quality of the 
grapes is the Spectron (Pellenc SA, Pertuis, France). 
This sensor is integrated with GPS and can be used 
for non-destructive measurements of quality-related 
parameters, like sugar, acidity, anthocyanins and 
water content (Matese and Di Gennaro, 2015).

Yield assessment by proximal sensors 
Many systems are available to obtain georeferenced 

yield information. These are: HarvestMaster Sensor 
System HM570 (Juniper Systems Inc., Logan, USA), 
Canlink Grape Yield Monitor 3000GRM (Farmscan, 
Bentley, WA, Australia), and Advanced Technology 
and Viticulture (ATV) (Advanced Technology 
Viticulture, Joslin, SA, Australia). These systems are 
mounted on mechanical harvesters and for yield 
assessment they use volumetric grape measurement 
on the discharge conveyor belt of the harvester and/or 
direct measurement of the transported grape weight 
by means of load cells. 
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Assessment of microclimate and other parameters 
in vineyard using Wireless Sensor Network

Wireless sensor network (WSN) technologies 
provide a useful and efficient tool for remote and 
real-time monitoring of important variables of a 
vineyard. A WSN consists of wireless peripheral 
nodes and a sensor board equipped with sensors 
and a wireless module for data transmission from 
nodes to a base station. At base station the data 
are stored and these data accessible to the end 
user for taking appropriate vineyard management 
decisions. Applications and configuration 
of WSN in vineyards has been adequately 
described (Burrell et al.,2004) and WSN has been 
successfully used for prolonged temperature and 
microclimate measurements (Matese et al., 2013). 
The primary application of WSN is the acquisition 
of micrometeorological parameters at vine canopy 
and soil level. Recent developments of new kinds 
of sensors such as dendrometers and sap-flow 
sensors made it possible to continuously measure 
plant water status for irrigation scheduling.

Forecasting and decision support systems (DSSs)
Precision viticulture aims at reducing input 

costs; enhancing productivity and quality of the 
produce; and protecting environment. Reliable and 
timely forecasts provide useful information for 
planning in advance. Viticulture is highly input and 
cost intensive. In crops, production and attack of 
insect pests and diseases and production estimates 
are the two major aspects that need attention. Insect 
pests and diseases are major causes of reduction in 
productivity and their appearance and intensity 
can be forecasted based on weather parameters. 
Timely application of remedial measures reduces 
the yield loss. 

Forecasts of crop production before harvest are 
required for different policy decisions related to 
storage, value addition, pricing, marketing, import-
export, etc. Other tools for timely application of inputs 
are Decision Support Systems (DSSs). Decision support 
systems (Power, 2002) are interactive, computer-
based systems which help users to accurately identify 
specific problem (mainly nutrient deficiency and 
incidence of insect pest/disease) based on symptoms 
in the vineyard. Once the problem is identified, DSS 
suggests management strategies for it. 

In viticulture, DSSs have been of great help in 
making appropriate decisions at appropriate time, 

thereby, reducing crop losses to a greater extent. 
Several DSSs are available for guiding the vine 
growers to take suitable management strategies to 
address macro- and micro-fertilizer deficiencies, 
incidence of diseases and infestations by inset pests. 
Metos® (Pessl Instruments GmbH, Werksweg, Weiz, 
Austria) is commercially available decision support 
system for grape production. 

ICAR-National Research Centre for Grapes, Pune, 
India (https://nrcgrapes.icar.gov.in) has developed 
some DSSs on irrigation, soil nutrition, diseases and 
insect pests for assisting Indian grape growers for 
judicious use of inputs. 

Variable rate technology (VRT)
Farm machines fitted with VRT technology 

(sensors) and GPS make precise operations based 
on prescription maps prepared using remotely and 
proximally recorded data of the vineyard. Based 
on these prescriptions, these VRT machines apply 
various inputs (fertilizers, pesticides and other 
inputs) at right doses and at right places without 
manually changing rate settings. This is possible due 
to GPS module and electronics, consisting of control 
units and proportional servo-valves mounted on 
VRT machine. In order to have a standardized system 
of communication between tractors, software and 
various equipment and to allow the exchange of data 
and information with a universal language through 
a single control console integrated in the tractor cab, 
the ISOBUS or ISO 11783 protocol has been developed 
(ISO Standard. Available online: https://www.iso.
org/standard/57556.html 

In addition to fertilizers and pesticide 
applications, such thematic prescription maps can 
be developed for yield and quality parameters like 
acidity, polyphenols and anthocyanin. Another 
application of VRT machines is selective harvesting. 
Selective harvesting is split picking of fruit according 
to a vineyard vigor mapping, grape composition, 
and quality as per market demand. For example, 
grapes grown for juice purpose, sugar content is an 
important target for harvest, while, combinations of 
sugar content, anthocyanin content and acidity could 
be targets for grapes grown for wine purpose. 

It has been reported that a variable rate fertilization 
can save up to 30% of fertilizers (Donna et al., 2013) 
and a variable rate application of pesticides can save 
up to 30% of pesticides and increase the profit up to 
20% (Casa, 2017).
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Robots
The use of robotics in agriculture is still in infancy, 

however, the agricultural robotics is poised to change 
agricultural scenario in the world by 2050 (Blackmore, 
2014). In viticulture, The VineRobot project at the 
University of La Rioja, Spain is aimed to develop a 
new agricultural robot, equipped with noninvasive 
monitoring technologies and GPS. Such robots 
are expected to perform a proximal monitoring of 
various critical parameters such as yield, vigor, water 
stress, quality of the grapes and assist vine growers to 
improve vineyard management. The Commercially 
available Wall-Ye robot (http://www.wall-ye.com/) 
can move along vine rows and acquire data on each 
vine, thereby, producing detailed vineyard map. 
Wall-Ye can prune about 600 plants per day and can 
be remotely controlled by iPad. 

Another robot called VineGuard developed by 
Ben-Gurion University, Israel is designed for foliar 
applications. This robot can move within the vineyard 
using a complex set of sensors. Another commercially 
available robot is “Vitirover” (https://www.vitirover.
fr/en-home). This robot was developed by Chateau 
Coutet (Saint Emilion, France) and it can cut the 
weeds up to a distance of 2–3 cm from the base of 
the vine. Solar power system is fixed on this robot. 
Several other robots and robotic tractors are under 
various stages of development and testing.

Precision technologies in viticulture
The introduction of new technologies for 

vineyard management facilitate enhancement in 
efficiency, productivity and quality and reduction 
in cost of cultivation and environmental impact. 
Precision technologies have been used for various 
purposes in vineyards.

Soil properties
Variations in soil fertility impact vineyard 

performance. Mobile platforms fitted with proximal 
soil sensors can be moved over the field to acquire 
geo-referenced soil data. High-resolution maps 
developed using this soil data and GPS provide 
valuable soil information on spatial variability of soil 
properties and topography which are relevant when 
establishing new vineyards and/or redeveloping 
existing vineyards (Bramley, 2010). Data acquired 
from Recently, data acquired from electromagnetic 
induction sensors and multispectral imaging were 
combined to estimate vineyard soil and vine vigour 
variability (Hubbard et al., 2021). 

Use of electrical resistivity sensors is limited 
to determination of soil nutrients, pH and organic 
matter; however, optical and electrochemical sensors 
can be used for assessing patterns of chemical 
fertility parameters of the soil (Joseph et al., 2010). 
Performance of mobile near infrared spectrometry for 
in situ soil mapping and gamma-ray spectrometers 
for detecting the presence of particular minerals 
have been explored in vineyards by Schirrmann et al. 
(2013) and Simone et al. (2014), respectively. 

Vegetative growth, nutritional status and canopy  
architecture

Remote and Proximal Sensing-Derived Spectral 
Indices and Biophysical Variables have been widely 
employed to evaluate vine canopy growth and 
health in commercial vineyards (Darra et al., 2021). 
Nutritional status of leaf nitrogen can either be 
assessed using fluorescence-based portable sensors. 
Such sensors can also be mounted on mobile 
platforms (Diago et al., 2016a) Another technology 
known as light detection and ranging (LiDAR) has 
been shown to be a powerful technology for the rapid 
and non-destructive assessment of canopy and leaf 
parameters in vineyards (Arno et al., 2013). Some 
other precision viticulture applications are RGB 
camera imagery acquired by UAV for estimating 
canopy biomass and detecting missing plants (Di 
Gennaro and Matese, 2020) and UAV-based point 
cloud analysis to detect the severity in canopy 
decline caused by dieback-like disease symptoms 
(Ouyang et al. 2021). Canopy architecture, including 
fruit and leaf exposure and canopy porosity can 
assessed using machine vision technologies (Diago et 
al., 2016c) or on-the-go assessment using RGB image 
analysis (Diago et al., 2019). “VitiCanopy” App uses 
smartphones as imaging devices to measure vine 
performance attributes such as canopy vigour, LAI 
and porosity (De Bei et al., 2016).

Pests and diseases
Grape cultivation in India faces serious threats 

from several diseases and insect pests. Major fungal 
diseases are downy mildew, powdery mildew and 
anthracnose, whereas, mealybug and thrips are major 
insect pests that cause enormous economic losses to 
grape cultivation. Among these, Downey mildew 
is one of the serious diseases in many horticultural 
crops (Somkuwar and More, 1996) including grapes. 
Use of appropriate pesticide in right dose at right 
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time and right place holds the key for effective pest 
management. 

Visual inspection of diseases and insect pests 
is time consuming, subjective, risky and expensive. 
Use of new sensors and monitoring tools has been 
shown to provide objective, rapid, cheap and reliable 
diagnosis of pests and diseases in vineyards (Lee and 
Tardaguila, 2021). These technologies have opened 
new frontiers to map disease/pest across vineyards 
in order to apply fungicides differentially using VRT 
technology (Chen et al., 2020). Using computer vision 
and deep learning, Gutierrez et al. (2021b) could 
detect and differentiate downy mildew and spider 
mite in commercial vineyards. 

Computer vision, hyperspectral imaging and 
machine learning have been applied for assessing 
downy mildew in grapevines (Rose et al., 2016). Use 
of hand-held UV-LED fluorimeter for early detection 
of stilbenoid phytoalexins associated with Downey 
mildew infections on grape leaves was reported by 
Latouche et al. (2015). Wine producers set tolerance 
levels for diseases such as powdery mildew and 
Botrytis bunch rot. Two apps have been released 
(PMapp® and RotBot®) which allow users to quickly 
assess the severity of these diseases on clusters and 
calculate both the incidence and severity of the 
disease and also record other parameters such as 
date, time and geo-reference position (Hill et al., 2014; 
Birchmore et al., 2015).

Forecasting models and DSSs are valuable tools 
to manage biotic stresses in viticulture. During the 
last few years several computer-based disease and 
insect pest prediction models and decision support 
systems (DSS) have been developed in many crop 
plants including grapes. Rosa et al. (1993) developed 
PLASMO (Plasmopara Simulation Model) model for 
forecasting downy mildew in Vitis vinifera. The model 
simulates the development of downy mildew on the 
basis of climatic conditions. 

Chen et al. (2020) developed an efficient and 
accurate machine learning algorithms for predicting 
Downey mildew that reduced at least 50% of 
fungicide use in Bordeaux region of France. Brischetto 
et al. (2021) developed a mechanistic model to predict 
secondary infections of Plasmopara viticola and their 
severity as influenced by environmental conditions. 
Powdery mildew caused by Uncinula necator fungus 
is another important disease of grapes. Fungal 
growth, conidia formation and germ tube formation 
are mainly influenced by temperature. Management 

strategy of Powdery Mildew disease on grapes by a 
decision support system based on weather and image 
processing was developed by Mundankar et al. (2007). 

In warm tropical and sub-tropical conditions, 
anthracnose disease caused by Colletotrichum 
gloeosporioides affects tender shoots and young fruits 
reducing vine productivity and fruit quality. Disease 
incidence and severity have been shown to be dependent 
on weather parameters. Ghule et al. (2015) reported 
favourable weather conditions for development and 
progression of anthracnose. These were rainfall with 
minimum temperature between 22.33 to 23.12 0C, 
maximum temperature between 30.12 to 31.88 0C, RH-1 
more than 67% and RH-2 more than 51%. 

In India, major insect pests in grapes are 
mealybugs, thrips, flea beetle, leafhoppers, stem 
borer and mites in order of their economic damage 
to the crop. Indiscriminate use of pesticides not 
only increases cost of cultivation but also is harmful 
to the environment and human health. Therefore, 
pest management in viticulture should follow an 
integrated approach, including best agronomic 
practices, advance forecasting using models, decision 
support systems (DSSs), biological control agents and 
chemical sprays for reducing pesticide use (Pertot et 
al., 2017). Chougule et al. (2019) developed a grape 
crop protection decision support system named 
as “PDMGrapes” using ontology, semantic web 
rule language and image processing techniques for 
management of insect pests and diseases on grapes 
in hot tropical region of India. 

Lessio et al. (2021) have reviewed mathematical 
models and DSSs developed to predict key aspects 
of insect pests. These models are used for forecasting 
seasonal occurrence and spread of insect pests. Under 
integrated pest management (IPM), one of the most 
important components is the reduction in number 
of pesticide sprays and pesticide doses. Roman et al. 
(2022) developed DOSA3D decision support system 
that allows the dose to be adjusted to the specific 
scenario. DOSA3D calculates the optimal application 
volume rate by estimating the leaf area index and 
takes into account the overall spraying efficiency and 
the pest or disease to be controlled. DOSA3D could 
achieve pesticide savings up to 53% in fruit trees and 
60% in vineyards. 

Water status in vineyard
Current changing climates are characterized by 

water scarcity and higher temperatures; therefore, 
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assessment of vineyard water status and irrigation 
management are becoming increasingly important. 
Thermal imaging technology has been used 
extensively to determine vineyard water status 
manually (Grant et al., 2016) or remotely using aerial 
platforms (Bellvert et al., 2014). Thermographic 
instrument can also be mounted to a ground-based 
vehicle for on-the-go mapping of vine water status in 
commercial vineyards (Gutierrez et al., 2021a). Small 
thermal camera attached to a smartphone has also 
been used for assessing vine water status (Petri et al., 
2019). Recently, near infrared spectrometers mounted 
on mobile platforms have been used to assess vine 
water status in a stop-and-go mode (Diago et al., 
2017). A mobile phone application (ApeX-Vigne) has 
also been developed for monitoring vine water status 
in vineyards (Pichon et al., 2021). 

Yield components and crop forecasting
During harvesting of grapes, yield can be easily 

monitored by measuring the weight of berries flowing 
across load cells fitted to mechanical harvesters 
(Taylor et al., 2019). Computer vision systems have 
recently been used to assess grape yields based on 
cluster compactness (Palacios et al., 2019), number 
of berries per cluster (Aquino et al., 2018), cluster 
weight (Liu et al., 2020b) and berry size (Roscher et al., 
2014). Three android-based Apps viz., vitisFlower® 
(Aquino et al., 2015), vitisBerry® (Aquino et al., 
2015) and 3DBunch® (Liu et al., 2020a) have been 
developed for measurements of flower, berry and 
bunch parameters. For assessing large commercial 
vineyards, automatic RGB image capturing gadgets 
are mounted on mobile vehicles and yield predictions 
are made using computer vision technology (Palacios 
et al., 2020). 

In addition to these techniques, mathematical 
models are also used to predict annual yields in in 
many horticultural crops. Jaslam et al. (2022) used 
44 years (1974-75 to 2018-19) vegetable production 
data to forecast vegetable production in the next five 
years starting from 2019-20 in UAE. For onions and 
green shallots, linear trend model was selected as 
the best fit, whereas, simple exponential smoothing 
model was most suitable in cauliflowers, broccoli, 
pumpkins, squash, gourds and spinach. The 
optimum model obtained for forecasting carrots and 
turnips was Holt’s linear exponential smoothing 
model and ARIMA model was the best fit for the rest 
of vegetable groups. 

Fruit composition and quality attributes
Near infrared spectral analyzers are capable of 

monitoring dynamic changes in berry composition 
during the ripening period and, therefore, provide 
an alternative option to destructive quality testing 
procedures. Portable near infrared spectrometers 
have been used for determining total soluble solids 
and other compositions in grape berries under 
both laboratory and field conditions (Barnaba et al., 
2013) This technology has also been successfully 
implemented on-the-go from a moving vehicle 
to monitor the dynamics of berry ripening in the 
vineyard (Fernandez-Novales et al., 2019). 

Another non-destructive technology consisting 
of hyperspectral imaging (HIS) to fingerprint the 
colour pigments of whole grape berries has also been 
developed for laboratory testing (Diago et al., 2016b) 
and on-the-go from a mobile platform in the vineyard 
(Benelli et al., 2021). A chlorophyll fluorescence-
based sensor Multiplex® (FORCE-A, Orsay, France) 
has been developed for contact-free measurement 
of anthocyanin content in grape berries under 
laboratory (Ben Ghozlen et al., 2010). These sensors 
can be mounted on harvesters for data acquisition 
on-the-go (Bramley et al., 2011) Computer vision 
technology is also being used for sorting berries in 
many wineries before crushing. Vegetation indices 
derived from remote and proximal sensors were also 
used to evaluate quality characteristics of table grapes 
(Anastasiou et al., 2018). Proximal sensing proved to 
be more accurate in terms of table grape yield and 
quality characteristics compared to satellite-based 
monitoring. 

CONCLUSION 

Choosing appropriate technologies for different 
types of application is important in precision 
viticulture. Though satellites and aircrafts are 
excellent tools for developing prescription maps for 
VRT machines, satellites have low resolutions and 
operational cost of aircrafts is high. In this regard, UAV 
platforms give high resolution, flexibility of use and 
economic feasibility. However, they can only monitor 
small areas. VRTs are well-developed and widely 
used, especially in chemical applications. Remote 
and proximal monitoring technologies and VRT 
machinery are being extensively used in some parts of 
the world, while robotics is in an experimental stage. 
In India, where majority of vineyards are small and 
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fragmented, use of expensive precision technologies 
may not be feasible. However, at village/block/district 
level some of these technologies like UAV and proximal 
sensors can be adopted by farmers’ cooperatives to 
make viticulture technologically, economically and 
environmentally sustainable. 
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